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Finite mixture models

We will focus on finite mixtures of Gaussians where the density is
given by

h(y |Θ) =
K∑

k=1

ηk fN (y |µk ,Σk ),

where fN () is the multivariate normal distribution and

ηk ≥ 0,
K∑

k=1

ηk = 1.



Open issues in model-based clustering

Selecting a suitable number of components K .

Identifying cluster-relevant variables.

Dealing with non-normal cluster shapes.

⇒We investigate how to resolve these issues in a Bayesian estimation
context.



Bayesian parameter estimation: Motivation

Prior information can be included in the model fitting process.

Smoothing and regularization effect on the mixture likelihood
function (Fraley and Raftery, 2007).

Parameter uncertainty can be easily assessed using the whole
posterior distribution.

No reliance on asymptotic normality allowing for valid inference in
cases where regularity conditions are violated, e.g., small data
sets and mixtures with small component weights.

The posterior distribution for N iid observations from the mixture
model is given by

p(η,µ,Σ|y1, . . . , yN) ∝ p(y1, . . . , yN |η,µ,Σ)p(η,µ,Σ),

where p(η,µ,Σ) is the prior distribution.



Prior choice: General considerations
We will only focus on priors with the following characteristics:

A-priori the different sets of parameters are independent and also
the parameters between components are independent:

p(η,µ,Σ) = p(η)p(µ)p(Σ)

= p(η)
K∏

k=1

p(µk )
K∏

k=1

p(Σk )

Symmetric priors, i.e., they are invariant to relabeling of the
components.

Proper priors to avoid improper posteriors.

Conditional conjugate priors to allow for Gibbs sampling after data
augmentation (if possible).

Consider the use of hyperpriors to reduce sensitivity of a specific
choice of the prior parameters.



Prior choices for sparse modeling

We will investigate the choice of

Priors on the weights:
In particular for the case of overfitting mixtures, where the
likelihood is problematic.

Priors on the component means:
Assuming the presence of cluster-irrelevant variables we
investigate priors which allow to distinguish between
cluster-relevant and cluster-irrelevant variables.



Prior on the weights

Conjugate prior: Dirichlet prior

η ∼ D(e1, . . . , eK )

The exchangeable Dirichlet prior is assumed with

ek ≡ e0, k = 1, . . . ,K .

This implies:

The prior expectation is

E[ηk |e0] =
1
K

regardless of the specific value of e0.
The prior variance depends on the size of e0.



Prior on the weights / 2



Prior on the weights / 3

Gibbs sampling step:

Draw η from the following Dirichlet distribution

η|S ∼ D(n1 + e0, . . . , nK + e0),

where nk are the number of observations assigned to
component k , i.e., the number of observations, where Si = k .

The mean of this conditional posterior is

E[ηk |S, e0] =
nk + e0

N + Ke0
.

The choice of e0 is rather uncontroversial if the number of
components is assumed to be known.

Under model uncertainty, the choice of e0 is crucial.
⇒ A suitable value needs to be selected depending on the
strategy used to determine the true number of components K true.



Dirichlet prior for overfitting mixtures

Overfitting mixtures are mixtures where the fitted number of
components K exceeds the true number of components K true.

The likelihood reflects the two possible ways of dealing with the
superfluous components:

Empty components:
ηk is shrunken towards 0.
The component-specific parameters are identified only
through their prior.

Duplicated components:
The difference of the component-specific parameters are
shrunken towards 0.
Only the sum of the corresponding component weights is
identified.

The likelihood is multimodal, because it mixes these two
unidentifiability modes.



Dirichlet prior for overfitting mixtures / 2

Recent research by Rousseau and Mengersen (2011) indicates
that the value of e0 strongly influences the posterior density for
overfitting mixtures.

They show the following asymptotic result:

If e0 < d/2, then asymptotically the posterior density
concentrates over regions where K − K true groups are left
empty.
If e0 > d/2, then asymptotically the posterior density
concentrates over regions with duplicated components.

d denotes the dimension of the component-specific parameters.

Consequence for empirical applications:

Decide through the Dirichlet prior whether you prefer empty
groups or duplicated components for overfitting mixtures.
This decision helps to interpret the draws from the posterior
distribution of an overfitting mixture.



Identifying the number of components

We distinguish the following model selection approaches:

Marginal likelihoods and Reversible Jump MCMC (RJMCMC):

Use overfitting mixtures with duplicated components (e0

large).
⇒ Avoids overestimating K true.

Non-empty components:
Determine the number of non-empty components for each sweep
m of the sampler

K (m)
0 = K −

K∑
k=1

I{n(m)
k = 0}

and use the most frequently visited value as estimate for K true.

Use overfitting mixtures with empty components (e0 small).

See Nobile (2004).



Prior on the component means

Conjugate prior: multivariate normal distribution.

µk ∼ N (b0,B0).

Gibbs sampling step:

Draw µk from the following multivariate normal distribution:

µk ∼ N (bk ,Bk ),

where

Bk =
(
B−1

0 + nk Σ−1
k

)−1
,

bk = Bk
(
B−1

0 b0 + nk Σ−1
k ȳk

)
,

where ȳk is the sample mean in group k .

Proper priors pull the component means toward prior mean.
The amount is governed by the prior variance.



Identifying cluster-irrelevant variables

Inclusion of cluster-irrelevant variables can:

Mask the cluster structure.
Reduce the accuracy of the parameter estimates.

Proposed approaches:

Variable selection using stepwise procedures or stochastic
model search (Raftery and Dean, 2006).
Shrinking of component means towards a common mean
(Yau and Holmes, 2011; Frühwirth-Schnatter, 2011).



Shrinkage priors

We consider shrinkage priors which can be represented as a scale
mixture of normals.

Assuming y ∼ N (µ, σ2), the prior distribution for the location
parameter µ is specified as

π(µ) =

∫
fN (µ|0, λ)dπ(λ),

where π(λ) is a mixing distribution.

This prior can also be expressed in hierarchical form as

µ ∼ N (0, λ),

λ ∼ π(λ).

⇒ Easy to implement for MCMC sampling.



Shrinkage priors / 2

Some examples:

If π(λ) ∼ G(1, ν2), the marginal distribution π(µ) is the
double-exponential prior.
⇒ Lasso (Yau and Holmes, 2011)
If π(λ) ∼ G(ν1, ν2), the marginal distribution π(µ) is called
the normal gamma prior (Griffin and Brown, 2010).

If ν1 = ν2:

E(λj) = 1.
⇒ The expected variance of µkj is as a-priori specified.
V(λj) = 1/ν1.
⇒ Choose ν1 < 1.

The normal gamma prior puts more weight around zero and has
heavier tails than the double-exponential distribution.



Shrinkage priors / 3
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Model identification

The likelihood is invariant with respect to a permutation of the
components.

The use of symmetric priors implies that this invariance also holds
for the posterior.

Component-specific inference is impossible based on the MCMC
output due to label switching (Redner and Walker, 1984).

Several strategies have been proposed to determine an identified
model (for an overview see Jasra et al., 2005).

We suggest to cluster (part of) the component-specific parameters
of the MCMC draws in the point process representation, e.g.,
using k -means, to obtain a unique labeling and to discard draws
where this is not achieved.



Modeling strategy

Use a large value for K and a small e0 in order to allow for
automatic selection of a suitable number of clusters using the most
frequent number of non-empty clusters during MCMC sampling.

e0 can be either set very small and fixed.
Alternatively, we also investigate the use of a hyperprior

e0 ∼ G(a, a · K )

with a = 10.

Use a normal gamma prior for the component means with
ν1 = ν2 = 0.5 < 1.

If component means are pulled together with a shrinkage
prior, a hyperprior needs to be specified for the prior mean b0.

Note that for the normal gamma prior e0 needs to be selected
smaller than for the standard prior and fixing it gives better results.



Example: Simulation

Simple setup: 2 cluster-generating variables & 2 noisy variables
with 4 components and mean values:

(µ1,µ2,µ3,µ4) =


−2 −2 2 2

−2 2 2 −2

0 0 0 0

0 0 0 0


η = (0.25, 0.25, 0.25, 0.25)

Σ1 = Σ2 = Σ3 = Σ4 = diag(1, 1, 1, 1)

N = 1000, 10 data sets, averaged results.

Priors: ν1 = 0.5, e0 ∼ G(10, 10 · 15).

MCMC: 10000 draws after a burn-in of 2000 draws.



Example: Simulation / 2

Results for different K under the standard (Sta) and normal gamma
prior (NG), averaged over 10 data sets.

prior K ê0 e0 fixed K̂0 M0 M0,ρ MCR MSEµ
Sta 4 0.27 4 10000 0 0.049 0.184

15 0.05 4 9709 0 0.049 0.184

30 0.03 4 9786 0 0.048 0.185

Ng 4 0.01 4 10000 0 0.048 0.155

15 0.01 4 7620 0 0.048 0.156

30 0.01 4(9) 5294 0 0.048 0.159

30 0.001 4 9224 0 0.048 0.154



Example: Simulation / 3

1 data set, K = 15, standard prior, traces of the number of
observations allocated to the different components.



Mixtures of Gaussian mixtures

To account for non-normal shapes of the cluster distributions in the
finite mixture model

h(y |Θ) =
K∑

k=1

ηk fk (y |θk ),

each cluster distribution can be semi-parametrically estimated
using a finite mixture of Gaussians

fk (y |θk ) =

Lk∑
l=1

wkl fN (y |µkl ,Σkl).



Mixtures of Gaussian mixtures / 2

Using the finite mixture of Gaussians model for density estimation
implies:

The number of subcomponents Lk is less crucial and only
needs to be sufficiently high. So we assume Lk ≡ L for all k .
Identification of the subcomponent-specific parameters is not
necessary.

Using the likelihood only the mixture of Gaussian mixtures model
is not identifiable. Several post-processing methods have been
proposed to merge components into clusters (Baudry et al., 2010;
Hennig, 2010).



Mixtures of Gaussian mixtures: Prior choice

We use the prior specification in the Bayesian estimation to allow
for automatic distinction between subcomponents from the same
or different clusters.

We aim at finding density clusters of convex shapes with gaps
between the cluster densities.

The priors on the cluster level:

Sparse prior for the weights to allow for automatic selection of
number of clusters.
No shrinkage on cluster means.

The priors on the subcomponent level:

Prior on the weights which ensures that all subcomponents
are filled.
Shrinkage of subcomponent means toward the cluster mean.
The prior on the variance-covariance matrix tends to increase
their volumes.



Example: Simulation

Ktrue = 4 – true density:



Example: Simulation / 2

Kmax = 10, L = 3 – fitted density; K̂0 = 4; Ktrue = 4:



Example: Simulation / 3

Kmax = 10, L = 4 – fitted density; K̂0 = 4; Ktrue = 4:



Summary & future work

Summary:

Bayesian estimation of finite mixture models can help to deal
with unresolved issues in model-based clustering.
Suitable prior choice helps to identify:

Number of components.
Cluster-relevant and cluster-irrelevant variables.
Subcomponents and clusters in a mixture of mixtures.

Future work:

Priors to induce parsimonious mixture models with respect to
the variance-covariance matrices.
Further variants are possible when relaxing some of the
general considerations such as the choice of symmetric
priors.
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