

JOHANNES KEPLER UNIVERSITY LINZ | **JKU**

Flexible and Sparse Bayesian Model-Based Clustering

Bettina Grün

Joint work with S. Frühwirth-Schnatter and G. Malsiner-Walli Bozen 2014

This research is supported by the Austrian Science Fund (FWF): V170-N18.

Finite mixture models

 We will focus on finite mixtures of Gaussians where the density is given by

$$h(\mathbf{y}|\mathbf{\Theta}) = \sum_{k=1}^{K} \eta_k f_{\mathcal{N}}(\mathbf{y}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k),$$

where $f_{\mathcal{N}}()$ is the multivariate normal distribution and

$$\eta_k \ge 0, \qquad \qquad \sum_{k=1}^K \eta_k = 1.$$

Open issues in model-based clustering

- Selecting a suitable number of components *K*.
- Identifying cluster-relevant variables.
- Dealing with non-normal cluster shapes.

 \Rightarrow We investigate how to resolve these issues in a Bayesian estimation context.

Bayesian parameter estimation: Motivation

- Prior information can be included in the model fitting process.
- Smoothing and regularization effect on the mixture likelihood function (Fraley and Raftery, 2007).
- Parameter uncertainty can be easily assessed using the whole posterior distribution.
- No reliance on asymptotic normality allowing for valid inference in cases where regularity conditions are violated, e.g., small data sets and mixtures with small component weights.
- The posterior distribution for *N* iid observations from the mixture model is given by

$$p(\eta, \mu, \Sigma | \mathbf{y}_1, \dots, \mathbf{y}_N) \propto p(\mathbf{y}_1, \dots, \mathbf{y}_N | \eta, \mu, \Sigma) p(\eta, \mu, \Sigma),$$

where $p(\eta, \mu, \Sigma)$ is the prior distribution.

Prior choice: General considerations

I

We will only focus on priors with the following characteristics:

• A-priori the different sets of parameters are independent and also the parameters between components are independent:

$$egin{aligned} & \mathcal{P}(\eta,\mu,\Sigma) = \mathcal{P}(\eta)\mathcal{P}(\mu)\mathcal{P}(\Sigma) \ & = \mathcal{P}(\eta)\prod_{k=1}^{K}\mathcal{P}(\mu_k)\prod_{k=1}^{K}\mathcal{P}(\Sigma_k) \end{aligned}$$

- Symmetric priors, i.e., they are invariant to relabeling of the components.
- Proper priors to avoid improper posteriors.
- Conditional conjugate priors to allow for Gibbs sampling after data augmentation (if possible).
- Consider the use of hyperpriors to reduce sensitivity of a specific choice of the prior parameters.

Prior choices for sparse modeling

We will investigate the choice of

• Priors on the weights:

In particular for the case of overfitting mixtures, where the likelihood is problematic.

• Priors on the component means:

Assuming the presence of cluster-irrelevant variables we investigate priors which allow to distinguish between cluster-relevant and cluster-irrelevant variables.

Prior on the weights

• Conjugate prior: Dirichlet prior

$$\boldsymbol{\eta} \sim \mathcal{D}(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_K)$$

• The exchangeable Dirichlet prior is assumed with

$$e_k \equiv e_0, \quad k = 1, \ldots, K.$$

This implies:

• The prior expectation is

$$\mathbb{E}[\eta_k|\boldsymbol{e}_0] = \frac{1}{K}$$

regardless of the specific value of e_0 .

• The prior variance depends on the size of *e*₀.

Prior on the weights / 2

Prior on the weights / 3

- Gibbs sampling step:
 - Draw η from the following Dirichlet distribution

$$\boldsymbol{\eta} | \boldsymbol{S} \sim \mathcal{D}(n_1 + \boldsymbol{e}_0, \dots, n_K + \boldsymbol{e}_0),$$

where n_k are the number of observations assigned to component *k*, i.e., the number of observations, where $S_i = k$.

• The mean of this conditional posterior is

$$\mathbb{E}[\eta_k | \boldsymbol{S}, \boldsymbol{e}_0] = rac{n_k + \boldsymbol{e}_0}{N + K \boldsymbol{e}_0}.$$

- The choice of *e*₀ is rather uncontroversial if the number of components is assumed to be known.
- Under model uncertainty, the choice of e₀ is crucial.
 ⇒ A suitable value needs to be selected depending on the strategy used to determine the true number of components K^{true}.

Dirichlet prior for overfitting mixtures

- Overfitting mixtures are mixtures where the fitted number of components K exceeds the true number of components K^{true}.
- The likelihood reflects the two possible ways of dealing with the superfluous components:
 - Empty components:
 - η_k is shrunken towards 0.
 - The component-specific parameters are identified only through their prior.
 - Duplicated components:
 - The difference of the component-specific parameters are shrunken towards 0.
 - Only the sum of the corresponding component weights is identified.
- The likelihood is multimodal, because it mixes these two unidentifiability modes.

Dirichlet prior for overfitting mixtures / 2

- Recent research by Rousseau and Mengersen (2011) indicates that the value of e₀ strongly influences the posterior density for overfitting mixtures.
- They show the following asymptotic result:
 - If e₀ < d/2, then asymptotically the posterior density concentrates over regions where K − K^{true} groups are left empty.
 - If e₀ > d/2, then asymptotically the posterior density concentrates over regions with duplicated components.

d denotes the dimension of the component-specific parameters.

- Consequence for empirical applications:
 - Decide through the Dirichlet prior whether you prefer empty groups or duplicated components for overfitting mixtures.
 - This decision helps to interpret the draws from the posterior distribution of an overfitting mixture.

Identifying the number of components

We distinguish the following model selection approaches:

- Marginal likelihoods and Reversible Jump MCMC (RJMCMC):
 - Use overfitting mixtures with duplicated components (*e*₀ large).
 - \Rightarrow Avoids overestimating K^{true} .
- Non-empty components: Determine the number of non-empty components for each sweep *m* of the sampler

$$K_0^{(m)} = K - \sum_{k=1}^{K} I\{n_k^{(m)} = 0\}$$

and use the most frequently visited value as estimate for K^{true} .

• Use overfitting mixtures with empty components (*e*₀ small). See Nobile (2004).

Prior on the component means

• Conjugate prior: multivariate normal distribution.

$$oldsymbol{\mu}_k \sim \mathcal{N}(oldsymbol{b}_0, oldsymbol{B}_0).$$

- Gibbs sampling step:
 - Draw μ_k from the following multivariate normal distribution:

$$\boldsymbol{\mu}_k \sim \mathcal{N}(\boldsymbol{b}_k, \boldsymbol{B}_k),$$

where

$$\begin{split} \boldsymbol{B}_{k} &= \left(\boldsymbol{B}_{0}^{-1} + n_{k}\boldsymbol{\Sigma}_{k}^{-1}\right)^{-1}, \\ \boldsymbol{b}_{k} &= \boldsymbol{B}_{k}\left(\boldsymbol{B}_{0}^{-1}\boldsymbol{b}_{0} + n_{k}\boldsymbol{\Sigma}_{k}^{-1}\bar{\boldsymbol{y}}_{k}\right), \end{split}$$

where \bar{y}_k is the sample mean in group *k*.

- Proper priors pull the component means toward prior mean.
- The amount is governed by the prior variance.

Identifying cluster-irrelevant variables

- Inclusion of cluster-irrelevant variables can:
 - Mask the cluster structure.
 - Reduce the accuracy of the parameter estimates.
- Proposed approaches:
 - Variable selection using stepwise procedures or stochastic model search (Raftery and Dean, 2006).
 - Shrinking of component means towards a common mean (Yau and Holmes, 2011; Frühwirth-Schnatter, 2011).

Shrinkage priors

- We consider shrinkage priors which can be represented as a scale mixture of normals.
- Assuming $y \sim \mathcal{N}(\mu, \sigma^2)$, the prior distribution for the location parameter μ is specified as

$$\pi(\mu) = \int \mathit{f}_{\mathcal{N}}(\mu|\mathbf{0},\lambda) \mathit{d}\pi(\lambda),$$

where $\pi(\lambda)$ is a mixing distribution.

This prior can also be expressed in hierarchical form as

$$\mu \sim \mathcal{N}(\mathbf{0},\lambda),$$

 $\lambda \sim \pi(\lambda).$

 \Rightarrow Easy to implement for MCMC sampling.

Shrinkage priors / 2

- Some examples:
 - If π(λ) ~ G(1, ν₂), the marginal distribution π(μ) is the double-exponential prior.

 \Rightarrow Lasso (Yau and Holmes, 2011)

 If π(λ) ~ G(ν₁, ν₂), the marginal distribution π(μ) is called the normal gamma prior (Griffin and Brown, 2010).

• If
$$\nu_1 = \nu_2$$
:

- $\mathbb{E}(\lambda_j) = 1.$
 - \Rightarrow The expected variance of μ_{kj} is as a-priori specified.
- $\mathbb{V}(\lambda_j) = 1/\nu_1.$ \Rightarrow Choose $\nu_1 < 1.$
- The normal gamma prior puts more weight around zero and has heavier tails than the double-exponential distribution.

Shrinkage priors / 3

Model identification

- The likelihood is invariant with respect to a permutation of the components.
- The use of symmetric priors implies that this invariance also holds for the posterior.
- Component-specific inference is impossible based on the MCMC output due to **label switching** (Redner and Walker, 1984).
- Several strategies have been proposed to determine an identified model (for an overview see Jasra et al., 2005).
- We suggest to cluster (part of) the component-specific parameters of the MCMC draws in the point process representation, e.g., using *k*-means, to obtain a unique labeling and to discard draws where this is not achieved.

Modeling strategy

- Use a large value for *K* and a small *e*₀ in order to allow for automatic selection of a suitable number of clusters using the most frequent number of non-empty clusters during MCMC sampling.
 - *e*₀ can be either set very small and fixed.
 - Alternatively, we also investigate the use of a hyperprior

$$e_0 \sim \mathcal{G}(a, a \cdot K)$$

with a = 10.

- Use a normal gamma prior for the component means with $\nu_1 = \nu_2 = 0.5 < 1.$
 - If component means are pulled together with a shrinkage prior, a hyperprior needs to be specified for the prior mean b₀.
- Note that for the normal gamma prior e₀ needs to be selected smaller than for the standard prior and fixing it gives better results.

Example: Simulation

• Simple setup: 2 cluster-generating variables & 2 noisy variables with 4 components and mean values:

$$(\mu_1,\mu_2,\mu_3,\mu_4)=\left(egin{array}{cccccc} -2&-2&2&2\ -2&2&2&-2\ 0&0&0&0\ 0&0&0&0\end{array}
ight)$$

- $\eta = (0.25, 0.25, 0.25, 0.25)$
- $\Sigma_1 = \Sigma_2 = \Sigma_3 = \Sigma_4 = diag(1, 1, 1, 1)$
- N = 1000, 10 data sets, averaged results.
- Priors: $\nu_1 = 0.5$, $e_0 \sim \mathcal{G}(10, 10 \cdot 15)$.
- MCMC: 10000 draws after a burn-in of 2000 draws.

Example: Simulation / 2

Results for different K under the standard (Sta) and normal gamma prior (NG), averaged over 10 data sets.

prior	K	\hat{e}_0	e_0 fixed	$\hat{\boldsymbol{K}}_0$	<i>M</i> ₀	$M_{0,\rho}$	MCR	MSE_μ
Sta	4	0.27		4	10000	0	0.049	0.184
	15	0.05		4	9709	0	0.049	0.184
	30	0.03		4	9786	0	0.048	0.185
Ng	4		0.01	4	10000	0	0.048	0.155
	15		0.01	4	7620	0	0.048	0.156
	30		0.01	4 (9)	5294	0	0.048	0.159
	30		0.001	4	9224	0	0.048	0.154

Example: Simulation / 3

1 data set, K = 15, standard prior, traces of the number of observations allocated to the different components.

Mixtures of Gaussian mixtures

 To account for non-normal shapes of the cluster distributions in the finite mixture model

$$h(\boldsymbol{y}|\boldsymbol{\Theta}) = \sum_{k=1}^{K} \eta_k f_k(\boldsymbol{y}|\boldsymbol{\theta}_k),$$

each cluster distribution can be semi-parametrically estimated using a finite mixture of Gaussians

$$f_k(\boldsymbol{y}|\boldsymbol{\theta}_k) = \sum_{l=1}^{L_k} w_{kl} f_{\mathcal{N}}(\boldsymbol{y}|\boldsymbol{\mu}_{kl}, \boldsymbol{\Sigma}_{kl}).$$

Mixtures of Gaussian mixtures / 2

- Using the finite mixture of Gaussians model for density estimation implies:
 - The number of subcomponents *L_k* is less crucial and only needs to be sufficiently high. So we assume *L_k* = *L* for all *k*.
 - Identification of the subcomponent-specific parameters is not necessary.
- Using the likelihood only the mixture of Gaussian mixtures model is not identifiable. Several post-processing methods have been proposed to merge components into clusters (Baudry et al., 2010; Hennig, 2010).

Mixtures of Gaussian mixtures: Prior choice

- We use the prior specification in the Bayesian estimation to allow for automatic distinction between subcomponents from the same or different clusters.
- We aim at finding density clusters of convex shapes with gaps between the cluster densities.
- The priors on the cluster level:
 - Sparse prior for the weights to allow for automatic selection of number of clusters.
 - No shrinkage on cluster means.
- The priors on the subcomponent level:
 - Prior on the weights which ensures that all subcomponents are filled.
 - Shrinkage of subcomponent means toward the cluster mean.
 - The prior on the variance-covariance matrix tends to increase their volumes.

Example: Simulation

 $K_{true} = 4 - true density:$

х

Example: Simulation / 2

$$K_{\text{max}} = 10, L = 3 - \text{fitted density}; \hat{K}_0 = 4; K_{\text{true}} = 4$$
:

Example: Simulation / 3

$$K_{\text{max}} = 10, L = 4 - \text{fitted density}; \hat{K}_0 = 4; K_{\text{true}} = 4$$
:

Summary & future work

- Summary:
 - Bayesian estimation of finite mixture models can help to deal with unresolved issues in model-based clustering.
 - Suitable prior choice helps to identify:
 - Number of components.
 - Cluster-relevant and cluster-irrelevant variables.
 - Subcomponents and clusters in a mixture of mixtures.
- Future work:
 - Priors to induce parsimonious mixture models with respect to the variance-covariance matrices.
 - Further variants are possible when relaxing some of the general considerations such as the choice of symmetric priors.

References

- J. Baudry, A. E. Raftery, G. Celeux, K. Lo, and R. Gottardo. Combining mixture components for clustering. Journal of Computational and Graphical Statistics, 19:332–353, 2010.
- C. Fraley and A. E. Raftery. Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification, 24(2): 155–181, Sept. 2007.
- S. Frühwirth-Schnatter. Label switching under model uncertainty. In K. Mengerson, C. Robert, and D. Titterington, editors, Mixtures: Estimation and Application, pages 213–239. Wiley, 2011.
- J. E. Griffin and P. J. Brown. Inference with normal-gamma prior distributions in regression problems. **Bayesian Analysis**, 5(1):171–188, 2010.
- C. Hennig. Methods for merging Gaussian mixture components. Advances in Data Analysis and Classification, 4:3–34, 2010.
- A. Jasra, C. C. Holmes, and D. A. Stephens. Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science, 20(1):50–67, 2005.

References / 2

- G. Malsiner-Walli, S. Frühwirth-Schnatter, and B. Grün. Model-based clustering based on sparse finite Gaussian mixtures. **Statistics and Computing**, in press.
- A. Nobile. On the posterior distribution of the number of components in a finite mixture. The Annals of Statistics, 32:2044–2073, 2004.
- A. E. Raftery and N. Dean. Variable selection for model-based clustering. Journal of the American Statistical Association, 101(473):168–178, 2006.
- R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26(2):195–239, Apr. 1984.
- J. Rousseau and K. Mengersen. Asymptotic behaviour of the posterior distribution in overfitted mixture models. Journal of the Royal Statistical Society B, 73(5):689–710, 2011.
- C. Yau and C. Holmes. Hierarchical Bayesian nonparametric mixture models for clustering with variable relevance determination. **Bayesian Analysis**, 6 (2):329–352, 2011.