Pursuing a formalization of the clustering problem. Answers (and questions) via modal clustering

Giovanna Menardi
Department of Statistical Sciences
University of Padua menardi@stat.unipd.it

28 November, 2014

Motivating example

How many clusters?

Figure : "Lump and banana" data (Stuetzle and Nugent, 2010).

Motivating example

How many clusters?

Figure : "Lump and banana" data (Stuetzle and Nugent, 2010).

Motivating example

How many clusters?

Figure : "Lump and banana" data (Stuetzle and Nugent, 2010).

How many clusters?

- The "true" number of clusters is not obvious even in simple examples
- Both intuition and authomatic methods to determine the optimal number of clusters give different answers
- There is no benchmark to assess the appropriateness of each answer
- How find the best answer without formulating the right question?

To answer the question "how many clusters there are?" we should first ask: what is a cluster?

What is the underlying problem?

Clustering is an ill-posed-problem

- For clustering there exists no ground truth
(von Luxburg and Ben-David, 2005)
- The statistical properties of these methods are generally unknown, precluding the possibility of formal inference (Fraley and Raftery, 2002)
- The manner in which data 'should' be clustered depends on the desired resolution
(Domany, 1999)
- Which [...] definition is appropriate depends on the meaning of the data and the aim of analysis
(Hennig, 2013)
Can we pose it better?

The clustering problem

- Going back to the definition of a statistical problem...
- $\mathbf{X}=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$ sample of observations
- $x_{i}, i=1, \ldots, n$, i.i.d realizations from $x \sim f: \mathcal{X} \subseteq \mathbb{R}^{d} \mapsto \mathbb{R}$
- we are interested in some characteristic of f
- based on \mathbf{X} we make inference on f and, then, on its characteristics
- Why such a reluctance in doing the same in a clustering problem?
- We shall associate clusters to some specific characteristic of f :
- parametric (model-based) approach:
\mapsto clusters are homogeneous distributions combined in a mixture model
- nonparametric (modal) approach:
\mapsto clusters are the domains of attraction of the modes of f

Modal clustering

Attempting a formalization

- Clusters correspond to the domain of attraction of the modes of f
- Toward a formalization: Chacon (2013)
- $d=1$: set of points bounded by the local minima of f
- $d>1$: unstable manifolds of the negative gradient flow corresponding to the local maxima of f (Morse theory)

Modal clustering

Attempting a formalization

- Clusters correspond to the domain of attraction of the modes of f
- Toward a formalization: Chacon (2013)
- $d=1$: points at which f has a local maximum are archetypes of the clusters; boundaries are the local minima of f

Modal clustering

Attempting a formalization

- Clusters correspond to the domain of attraction of the modes of f
- Toward a formalization: Chacon (2013)
- $d=1$: points at which f has a local maximum are archetypes of the clusters; boundaries are the local minima of f
- $d>1$: unstable manifolds of the negative gradient flow corresponding to the local maxima of f (Morse theory)

Modal clustering

Attempting a formalization

- Clusters correspond to the domain of attraction of the modes of f
- Toward a formalization: Chacon (2013)
- $d=1$: points at which f has a local maximum are archetypes of the clusters; boundaries are the local minima of f
- $d>1$: unstable manifolds of the negative gradient flow corresponding to the local maxima of f (Morse theory)

Modal clustering

Attempting a formalization

- Clusters correspond to the domain of attraction of the modes of f
- Toward a formalization: Chacon (2013)
- $d=1$: points at which f has a local maximum are archetypes of the clusters; boundaries are the local minima of f
- $d>1$: unstable manifolds of the negative gradient flow corresponding to the local maxima of f (Morse theory)
- Formalization of these ideas for non-regular densities (non differentiable or densities with plateaux) is more complicated but still possible

Modal clustering

How to?

(1) Bump hunting:
\mapsto explicit search of local maxima of the density estimate
\mapsto gradient ascent algorithms identify, for each observation, its uphill path toward the pertaining mode

- EM based algorithm: Li, Ray and Lindsay (2007)
- Mean-shift based algorithms: Cheng (1995), Comaniciu and Meer (2002), Chacon and Duong (2013)

Bumb hunting

A toy example

Bumb hunting

A toy example

Bumb hunting

A toy example

Bumb hunting

A toy example

Bumb hunting

A toy example

Bumb hunting

A toy example

Bumb hunting

A toy example

Bumb hunting

A toy example

Bumb hunting

A toy example

Bumb hunting

A toy example

Bumb hunting

A toy example

Bumb hunting

A toy example

Bumb hunting

A toy example

Modal clustering

How to?

(2) Detection of connected components of the density level sets
\mapsto for $0 \leq k \leq \max f$, define the level set $R(k)$ as:

$$
R(k)=\left\{x \in \mathbb{R}^{d}: f(x) \geq k\right\}
$$

\mapsto clusters correspond to the maximum connected components of $R(k)$
\mapsto when k varies, the number of connected components of $R(k)$ varies and a hierarchical tree structure is generated.

- methods mainly differ for the procedure to find the connected components: Stuetzle (2003), Azzalini and Torelli (2007), Stuetzle and Nugent (2010), Menardi and Azzalini (2014)

Level set connected component detection

A toy example

Level set connected component detection

A toy example

Level set connected component detection

A toy example

Level set connected component detection

A toy example

Level set connected component detection

A toy example

Level set connected component detection

A toy example

Level set connected component detection

A toy example

Level set connected component detection

A toy example

Level set connected component detection

Graph-based connected components

- detection of the connected components of each level set is operationally performed by finding the connected components of a suitable graph built on tha data

Strengths of the approach

- Precise notion of cluster, associated with an intrinsic property of the data density
- definition of a ground truth in the clustering task
- number of clusters is conceptually defined
\mapsto determining the number of clusters is a circumscribed problem of estimation
\mapsto no detection of clusters (i.e. number of clusters equal to 1) is possible
\mapsto the number of clusters is determined by the procedure
- a probabilistic notion of cluster allows for providing each observation with a degree of confidence of belonging to the clusters
\mapsto soft clustering schemes or cluster diagnostics
- Appealing notion of cluster
- clusters are not bounded to have a particular shape
\mapsto operationally: nonparametric density estimation allows to maintain this freedom
- clusters ideally close to " natural groups" in data
- the cluster tree naturally defines different levels of cluster resolution

Not all that glitters is gold

- Density estimation
- governs the number and the shape of the clusters
- The nature of the data
- categorical/mixed data are precluded
- Computational issues
- actual implementation of the approach is often burdensome
- Conceptual questions
- is the nonparametric approach always appropriate?

Density estimation

- Shape, number and composition of the clusters depend on the density estimate
- Use of nonparametric methods to allow for maximum flexibility; e.g. kernel estimator:

$$
\hat{f}(x)=\sum_{i=1}^{n} \frac{1}{n h_{1} \cdots h_{d}} \prod_{j=1}^{d} K\left(\frac{x^{(j)}-x_{i}^{(j)}}{h_{j}}\right),
$$

$x^{(j)}, j$-th component of x.

- Main concerns:
- choice of the smoothing parameters
- curse of dimensionality

Density estimation

Choice of the smoothing parameters

- The number of clusters is affected by the choice of the bandwidths
- large bandwidths tend to oversmooth the density, possibly hiding some modes
- small bandwidths tend to undersmooth the density, and favor the appearance of spurious modes
- How to choose the bandwidths?
- critical in density estimation
- less influential than expected in clustering
- rule of thumb selections often work
- clustering robust to a quite wide range of values (depending on cluster separation)

Density estimation

Choice of the smoothing parameters - Example (1)

Figure: Density function (left) and associated (true) data clusters.

Density estimation

Choice of the smoothing parameters - Example (1)

> Bandwidth: $h_{N O R M}$
> (normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (1)

Bandwidth: $0.9 \times h_{\text {NORM }}$
(normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (1)

> Bandwidth: $0.8 \times h_{\text {NORM }}$
> (normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (1)

> Bandwidth: $0.7 \times h_{\text {NORM }}$
> (normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (1)

> Bandwidth: $0.6 \times h_{N O R M}$
> (normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (1)

Bandwidth: $0.5 \times h_{N O R M}$
(normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (1)

> Bandwidth: $1 \times h_{N O R M}$
> (normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (1)

> Bandwidth: $1.1 \times h_{\text {NORM }}$
> (normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (1)

Bandwidth: $1.2 \times h_{\text {NORM }}$
(normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (1)

Bandwidth: $1.3 \times h_{\text {NORM }}$
(normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (1)

Bandwidth: $1.4 \times h_{N O R M}$
(normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (1)

> Bandwidth: $1.5 \times h_{\text {NORM }}$
> (normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (2)

Figure: Density function (left) and associated (true) data clusters.

Density estimation

Choice of the smoothing parameters - Example (2)

Bandwidth: $h_{N O R M}$
(normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (2)

Bandwidth: $0.9 \times h_{\text {NORM }}$
(normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (2)

Bandwidth: $0.8 \times h_{\text {NORM }}$
(normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (2)

Bandwidth: $0.7 \times h_{\text {NORM }}$
(normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (2)

Bandwidth: $0.6 \times h_{N O R M}$
(normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (2)

> Bandwidth: $0.5 \times h_{\text {NORM }}$
> (normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (2)

Bandwidth: $h_{N O R M}$
(normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Choice of the smoothing parameters - Example (2)

Bandwidth: $1.1 \times h_{\text {NORM }}$
(normal reference rule: optimal for gaussian data)

Figure : Density function and associated clusters: true (left) and estimated (right).

Density estimation

Curse of dimensionality

- Nonparametric density estimate degrades as the dimensionality increases
- The sparsity of data produces empty neighborhoods, especially in the low-density regions
- birth of spurious clusters
- Modal clustering is jeopardized in high dimensions but for moderately high dimensions (tenths of variables):
- kernel estimator can still reveal the modes for fairly separated clusters
\mapsto oversmooth the density estimate
\mapsto use of adaptive estimator
- remedies to remove spurious clusters may help
\mapsto Methods for pruning the cluster tree based on evaluation of mode "relevance" (Stuetzle, 2003; Li et al., 2007; Stuetzle and Nugent, 2010)
\mapsto Evaluation of valley relevance based on introducing some tolerance parameter in graph building (Menardi and Azzalini, 2014)

The nature of the data

- Modal clustering hinges on the notions of probability density function and connected regions.
\mapsto intrinsically designed for continuous data
- Real data are usually of mixed nature (categorical/numeric)

How to circumvent the assumption of continuity?

The nature of the data

Handling categorical data: a possible solution ${ }^{1}$

- Categorical data may be thought of as a simplified representation of some continuous latent variables
- A latent numerical configuration can be found by means of multidimensional scaling (MDS)
- reflects the dissimilarities among points
- shares the starting point of traditional clustering methods
- Numerical coordinates are then passed to the density-based clustering procedure.
- involves some arbitrariness
- but still has been showing fair results

The nature of the data

Handling categorical data: an example

- Crabs data: 200 observations describing 5 morphological measurements from each of two colour forms and both sexes of the species Leptograpsus variegatus collected at Fremantle, W. Australia.
- Clustering based on use of the 5 continuous variables only cannot reconstruct neither the species or the gender

		Blue F	Blue M	Orange F	Orange M
clusters	1	28	21	9	22
	2	22	29	41	28

- Reconstruction is achieved by merging the observed numerical variables with a bidimensional configuration detected by classic MDS

		Blue F	Blue M	Orange F	Orange M
clusters	1	46	5	5	1
	2	0	45	0	0
	3	4	0	45	0
	4	0	0	0	49

Computational issues

- Computational complexity is strongly algorithm-dependent
- Bumb hunting methods
- main source of computation is the required iterative density estimation
- Connected components detection
- main source of computation is in detection of connected components (burdensome in multidimensional spaces)
\mapsto some methods require to establish if each pair of observations is connected by an edge in the associated graph \rightarrow computational complexity grows quadratically with the sample size
\mapsto other methods have computational complexity that is mildly affected by the sample size but grows exponentially with the dimensionality (Azzalini and Torelli, 2007)
- Reducing the computational complexity still remains an open problem, usually faced with ad hoc solutions

Conceptual questions

- Although often corresponding to a common-sense idea of group, the association between clusters and modes of a density function can be sometimes questioned
- Example (Hennig, 2010)

Figure : Unimodal distribution with evidence of more than one group

Conceptual questions

- Although often corresponding to a common-sense idea of group, the association between clusters and modes of a density function can be sometimes questioned
- Example (Hennig, 2010)

Figure : Unimodal distribution with evidence of more than one group

Conceptual questions

- Although often corresponding to a common-sense idea of group, the association between clusters and modes of a density function can be sometimes questioned
- Example (Hennig, 2010)

Figure : Unimodal distribution with evidence of more than one group

Conceptual questions

- Although often corresponding to a common-sense idea of group, the association between clusters and modes of a density function can be sometimes questioned
- Example (Stuetzle, 2003)

Figure : Unimodal distribution with evidence of more than one group

Conceptual questions

- Hand-made and very instable examples

Conceptual questions

- Hand-made and very instable examples

Conceptual questions

- Hand-made and very instable examples

Conceptual questions

- Hand-made and very instable examples

Conceptual questions

- Hand-made and very instable examples
- In order to say that two or more clusters exist we need to have in mind some concept of cluster \rightarrow go back to the starting point: the clustering problem needs to be precisely defined

Conceptual questions

- Hand-made and very instable examples
- In order to say that two or more clusters exist we need to have in mind some concept of cluster \rightarrow go back to the starting point: the clustering problem needs to be precisely defined
- For every precise notion of cluster, there exist some limit situations that cannot be caught

Conceptual questions

- Hand-made and very instable examples
- In order to say that two or more clusters exist we need to have in mind some concept of cluster \rightarrow go back to the starting point: the clustering problem needs to be precisely defined
- For every precise notion of cluster, there exist some limit situations that cannot be caught

To sum up

Modal clustering

- not meant to be the definitive answer to the clustering problem
- depending on clustering aim it may be suitable or not
- knowledge of the phenomenon must be still the priority guide
- human intervention is often unavoidable
- but still a sound attempt to keep the arbitrariness low
- natural clusters are a good-sense solution when aim of clustering is vague/unknown
- knowledge of the phenomenon should guide human intervention
- human intervention (usually) limited to some detailed aspects

Concluding example

(just for curiosity)

References

- Azzalini, A. and Torelli, N. Clustering via nonparametric density estimation. Stat. Comp., 17, 2007
- Cheng, Y. Mean Shift, Mode Seeking, and Clustering. IEEE Trans. Patt. An. Mach. Intell., 17, 1995.
- Chacn, J.,Clusters and water flows: a novel approach to modal clustering through morse theory. arXiv preprint arXiv:1212.1384, 2013.
- Chacn, J., Duong, T. Data-driven density derivative estimation, with applications to nonparametric clustering and bump hunting. Electron. J. Stat., 7, 2013.
- Comaniciu, d, Meer, P. Mean Shift: A Robust Approach toward Feature Space Analysis, IEEE Trans. Patt. An. Mach. Intell., 24, 2002
- Domany, E. Superparamagnetic clustering of data - The definitive solution of an ill-posed problem. Physica, A: Stat. Mech. and its Appl., 263, 1999.
- Hennig, C. Methods for merging Gaussian mixture components. Adv. Data An. \& Clas., 2010.
- Hennig, C. How many bee species? A case study in determining the number of clusters. Proc. GfKI-2012, 2013.
- Li. J, Ray. S, Lindsay. B. G, A nonparametric statistical approach to clustering via mode identfication, J. Mach. Learn. Res., 8, 2007.
- Fraley, C.,Raftery, A.E. Model-Based Clustering, Discriminant Analysis, and Density Estimation. J. Am. Stat. Ass., 97, 2002.
- Menardi, G., Azzalini, A. An advancement in clustering via nonparametric density estimation. Stat. Comp., 24, 2014.
- Stuetzle, W. Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample. J. Classif., 20, 2003.
- Stuetzle, W. and Nugent, R. A generalized single linkage method for estimating the cluster tree of a density. J. Comp. Graph. Stat., 19,2010.
- Von Luxburg, U., Ben-David, S. Towards a statistical theory for clustering. PASCAL Workshop on Stat. and Optim. of Clustering, 2005.

