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Introduction Motivation

Motivation

"Impacts on the physical environment are often the
result of compound events."

IPCC Report, 2012

"Dependencies change the risks. It is possible to cal-
culate the consequences of individual events, such as an
extreme tide, heavy rainfall and key workers being ab-
sent. However, if the events are interrelated, (for example
a storm causes a high tide, or heavy rain prevents work-
ers from accessing the site) then the probability of their
co-occurrence is much higher than might be expected."

Sutherland et al., Science, 2013
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Introduction Motivation

Motivation

Recent years have seen a growing need for new tools in the
analysis of the regional variability of rainfall extremes useful in
environmental monitoring

Hydrological phenomena are often multidimensional and re-
quire the joint modeling of several random variables (Genest,
Favre, 2007)

Many research efforts have remarked on the usefulness of ex-
treme value theory and copula functions in assessing climate
changes and detecting spatial clusters
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Introduction Why Clustering?

Why Clustering?

Informally, clustering consists in finding natural groupings
among objects

The identification of different groups in a set of climate time
series is relevant to identify subgroups characterized by similar
behavior in order to adopt specific risk management strategies

Clustering techniques can be used to find some dependence
information, which is a key tool in geosciences and hydrology

The detection of spatial clusters can help in summarizing avail-
able data, extracting useful information
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Introduction Clustering time series

Clustering time series

A widely used approach to measure similarity is to consider a
Pearson-correlation based distance metric

Many studies have underlined that classical correlation mea-
sures are often inadequate to capture the real dependence
structure between individual risk factors (Embrechts, McNeil,
Straumann, 2002)

Recent approaches in time series clustering adopt a suitable
copula-based dissimilarity measure (Durante, Pappadà, Torelli,
2014) or combine extreme value theory and classification tech-
niques for assessing the spatial distribution of extremes (Scotto,
Alonso, Barbosa, 2010)
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Introduction Clustering time series

Clustering time series
The Problem

A time-series clustering procedure allows to group together series
exhibiting common trends occurring at different times or similar
sub-patterns in the data.

Choice of a proximity measure: A similarity (proximity) measure is
defined to measure the “closeness” of the observations.

Choice of group-building algorithm: On the basis of the proximity
measures the objects are assigned to groups to obtain

• high intra-cluster similarity
• low inter-cluster similarity
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Introduction Clustering time series

What is similarity?

A quality that makes one person or thing like another;
the quality or state of being similar: resemblance;
a comparable aspect: correspondence.

Merriam-Webster’s Dictionary
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Introduction Clustering time series

Clustering time series
The notion of dissimilarity

A dissimilarity function is usually understood to measure some kind
of distance between objects.
The dissimilarity δ(xi , xj) between xi , xj satisfies:

1 non-negativity: δ(xi , xj) ≥ 0
2 identity: δ(xi , xi) = 0
3 symmetry: δ(xi , xj) = δ(xj , xi)

I if the triangle inequality holds, δ is a distance measure;
I many clustering methods use distance measures to define the

dissimilarity between any pair of objects;
I common dissimilarity measures can be obtained as a suitable

transformation of Pearson correlation coefficient, rank corre-
lation coefficients (Kendall’s τ , Spearman’s ρ), Hoeffding’s D
statistic, etc.
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Detecting dependence via Kendall distribution The Kendall distribution function

Kendall d.f.

(Bivariate) copula.
A bivariate copula (or a 2-copula) is a 2-dimensional distribution
function whose univariate marginals are uniformly distributed on
[0,1].

Kendall distribution function
Let X be a continuous random vector on the probability space
(Ω,F ,P) whose distribution function is equal to H.

The Probability Integral Transform (PIT) of X is the random
variable W = H(X ).
The distribution function K of W is called Kendall distribution
function associated with X
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Detecting dependence via Kendall distribution The Kendall distribution function

Kendall d.f.

The calculation of K depends only on the copula C of X and does
not involve the knowledge the marginal distributions.

Specifically, for every t ∈ [0,1]

K (t) = P(W ≤ t)
= P(H(X ) ≤ t)

= µH({x ∈ R2 : H(x) ≤ t})
= µC({u ∈ [0,1]2 : C(u) ≤ t})

where µH , µC are the measures induced by the distribution
function H and the copula C on R2, respectively.
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Detecting dependence via Kendall distribution The Kendall distribution function

Kendall d.f. and dependence

For a random pair (X ,Y ), K (t) represents the probability of
the event {H(X ,Y ) ≤ t} thus the distribution puts no mass
outside the interval [0,1].
For a given pair (X ,Y ) distributed as H,

τ(X ,Y ) = 4E{H(X ,Y )} − 1 = 3− 4
∫ 1

0
K (t)dt .

K (t) = KM(t) = t for all 0 ≤ t ≤ 1 if and only if C = M, where
M is the the Fréchet-Hoeffding upper bound copula, denoting
perfect positive dependence.
K (t) = t − t log(t), 0 ≤ t ≤ 1 if and only if C = Π, where Π is
the product copula, denoting independence.
For each Kendall distribution K , one has the lower bound
K ≥ KM on [0,1].
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Detecting dependence via Kendall distribution The Kendall distribution function

Kendall d.f.: illustration

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

K
n(t

)

Empirical Kendall d.f. obtained from a random sample of size n = 100 points from
a bivariate normal vector with Kendall’s tau equal to 0.5.
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Detecting dependence via Kendall distribution The Kendall distribution function

Estimation of the Kendall distribution

Suppose that (X11,X12), . . . , (XT 1,XT2) is a random sample from a
distribution H with copula C.

The empirical Kendall distribution function KT is given, for all q ∈
[0,1], by

KT (q) =
1
T

T∑
j=1

1(Wj ≤ q),

where, for each j ∈ {1, . . . ,T},

Wj =
1

T + 1

T∑
t=1

1(Xt1 < Xj1,Xt2 < Xj2).

The empirical process
√

T (KT −K ) converges in law to a centered
Gaussian limit under mild regularity conditions.

[Genest, Něslehová, Ziegel, 2011]
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Detecting dependence via Kendall distribution Kendall d.f. and multivariate RP

The multivariate RP

The notion of Return Period (RP) is frequently used in environmen-
tal sciences for the identification of dangerous events, and provides
a means for rational decision making and risk assessment

Informally, the RP is defined as the average time elapsing between
two successive realizations of a prescribed event.

The calculation of the RP is strictly related to the notion of copula
and the Kendall distribution function turns out to be a fundamental
tool for calculating a copula-based RP for multivariate events.

[Salvadori, De Michele, Durante, 2011]
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Detecting dependence via Kendall distribution Kendall d.f. and multivariate RP

The multivariate RP
Preliminaries

Consider a d-dimensional random vector X with d.f. F , describing
the phenomenon under investigation, with suitable marginals Fi ’s
and d-copula C. Assume F continuous and strictly increasing in
each marginal. By virtue of Sklar’s Theorem

F = C(F1, . . . ,Fd ).

Given any t ∈ (0,1) define the region

R>
t = {x ∈ Rd : F (x) > t}.

called the super-critical region.

Remark Realizations lying over the same critical layer LF
t = {x ∈

Rd : F (x) = t} do always identify the same “dangerous” region
(i.e. R>

t ).
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Detecting dependence via Kendall distribution Kendall d.f. and multivariate RP

The multivariate RP
Definition

Kendall RP

Let X be a multivariate r.v. with d.f. F = C(F1, . . . ,Fd ). Let LF
t be

the critical layer supporting a realization x of X . Then, the RP
associated with x is defined as

T>
x =

µ

P(X ∈ R>
t )

=
µ

1− KC(t)

where µ is the average time elapsing between X i and X i+1 and
KC is the Kendall distribution function associated with C.
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Clustering time series via Kendall distribution The clustering procedure

The goal

We would like to use the Kendall distribution function in order to
develop a novel clustering procedure for grouping random vectors:

a time-series clustering procedure can be used in order to
obtain a description of the relationship between
measurements at different sites;

we aim at grouping the climate time series according to the
strength of their inter-dependence;

a copula-approach allows to detect the presence of clusters
of the analysed sites on the basis of the componentwise
maxima.
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Clustering time series via Kendall distribution The clustering procedure

The clustering procedure

Consider an iid sample X t
1, . . . ,X

t
n from a given r.v. X correspond-

ing to n different measurements collected at time t ∈ {1, . . . ,T}.

1 Calculate the Kendall distribution function K ij for (Xi ,Xj)
2 Define the metrics

d2(K ,KM) =

∫ 1

0
(q − K (q))2dq

d∞(K ,KM) = sup
q∈[0,1]

|q − K (q)|dq

where K = K ij and KM(t) = t is the Kendall distribution of
comonotone random variables

3 Create a dissimilarity matrix D := (δij), i , j = 1, . . . ,n, where,
for instance, δij = d2(K ij ,KM)

4 Apply classical clustering algorithms like hierarchical cluster-
ing (hclust) or fuzzy clustering (fanny).
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Clustering time series via Kendall distribution The clustering procedure

The clustering procedure
Hierarchical Agglomerative Clustering

hierarchical Create a hierarchical decomposition of the set of
objects using some criterion.

agglomerative Starting with each item in its own cluster, find the
best pair to merge into a new cluster and repeat
until all clusters are fused together.

A useful tool for summarizing similarity measurements

The similarity between two objects
is represented in a dendrogram as
the height of the lowest internal
node they share.
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Clustering time series via Kendall distribution An empirical case study

An empirical case study

Map of the rainfall measurement stations in the province of Bolzano-Bozen (North-Eastern, Italy)
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Clustering time series via Kendall distribution An empirical case study

The data

We consider daily rainfall measurements recorded at 18 gauge sta-
tions spread across the province of Bolzano-Bozen in the North-
Eastern Italy from 1961 to 2010. This data consists of d = 18 time
series originally formed by T = 18262 observations.

We extract annual maxima at each spatial location and obtain a
50×18 matrix of time series observations X̃ m

i , m ∈ {1, . . . ,50}, i ∈
{1, . . . ,18}

M =


X̃ 1

1 X̃ 1
2 · · · X̃ 1

18

X̃ 2
1 X̃ 2

2 · · · X̃ 2
18

...
...

. . .
...

X̃ 50
1 X̃ 50

2 · · · X̃ 50
18
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Clustering time series via Kendall distribution An empirical case study

The data

Code Station Longitude Latitude Height (m)

0220 S.VALENTINO ALLA MUTA 10.5277 46.7745 1520
0310 TUBRE 10.4775 46.6503 1119
2090 PLATA 11.1783 46.8225 1147
3140 FLERES 11.3477 46.9639 1246
3260 VIPITENO-CONVENTO 11.4295 46.8978 948
8320 BOLZANO 11.3127 46.4976 254
9150 SESTO 12.3477 46.7035 1310
0250 MONTE MARIA 10.5213 46.7057 1310
0480 MAZIA 10.6175 46.6943 1570
1580 VERNAGO 10.8493 46.7357 1700
2170 S.LEONARDO PASSIARIA 11.2471 46.8091 644
2670 PAVICOLO 11.1093 46.6278 1400
3450 RIDANNA 11.3068 46.9091 1350
4450 S.MADDALENA IN CASIES 12.2427 46.8353 1398
6650 FUNDRES 11.7029 46.8872 1159
8570 BRONZOLO 11.3111 46.4065 226
8730 REDAGNO 11.3968 46.3465 1562
9100 ANTERIVO 11.3678 46.2773 1209
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Clustering time series via Kendall distribution An empirical case study

The data
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Box plots of annual maxima at
each station from 1961 to 2010.
On the y -axis the amount of rainfall
is measured in millimeters.
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Clustering time series via Kendall distribution An empirical case study

The dissimilarity measure

The choice of the dissimilarity measure has to reflect the final goal
of the clustering procedure: two strongly dependent time series
correspond to an extremely low value of their dissimilarity.

For i , j = 1, . . . ,18, the dissimilarity between two time series is
computed as

δij = d2(K̂ ij ,KM) =

∫ 1

0
(q − K̂ ij(q))2dq,

where K̂ ij is the non-parametrically estimated Kendall distribution
function based on each pair of maxima observations (X̃ m

i , X̃
m
j ),

m ∈ {1, . . . ,50}.
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Clustering time series via Kendall distribution An empirical case study

Clusters visualization
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Dendrogram for the 18 rainfall measurement stations based on hierarchical clustering with complete linkage method.
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Clustering time series via Kendall distribution An empirical case study

Clusters visualization
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Map of the rainfall measurement stations marked according the the 4-clusters solution

R. PAPPADÀ (UNITS) Cluster analysis of ts via Kendall distribution Bolzano, 28-11-2014 27 / 30



Conclusions

Conclusions

I A procedure for grouping time series according to a copula-
based dependence function has been presented.

I A criterion to measure dissimilarity is defined on the basis of
the Kendall distribution associated to two continuous random
variables, since such a function provides useful information in
terms of environmental risk.

I Homogeneity in the sense of Kendall’s distance implies homo-
geneity in the sense of return period, a notion frequently used
in environmental sciences for the identification of dangerous
events and risk assessment.

I A case study with environmental data illustrates the potential
of the presented methodology.
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Thank You for Your attention!
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