
Functional Data Analysis and Cluster Analysis:  

a Marriage with some Constraints  
 

Simone VANTINI 

joint with L.M. SANGALLI, P. SECCHI, V. VITELLI 

28th November 2014, Bozen-Bolzano 

MOX – Dept. of Mathematics, Politecnico di Milano 



simone.vantini@polimi.it 

A marriage… 2 

Cluster Analysis 

(Identification of groups) 

Functional Data Analysis 

(Analysis of functions) 

Functional Data Clustering 

(Identification of groups of functions) 

+ 
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… with some constraints 3 

There are indeed some serious issues going on in this marriage: 

• No model at hand 

(probability density function does not exist,  

basically impossible to assess the validity of the model) 

• Choice of the Smoothing 

(functions and their derivatives need to be estimated from 

point-wise noisy evaluations) 

• Choice of the Metric 

(huge variety of distances wrt to the multivariate framework) 

• Choice of the Group of Warping Functions 

(data should generally be horizontaly aligned) 
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K-mean Clustering of Misaligned Data Using a Derivative-based Metric 
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Choice of the Smoothing 4 

Same row data (smoothed using B-splines with different number of knots) 

Weak Smoothing 

 

One Cluster 

Strong Smoothing 

 

Two Clusters 

Figures are courtesy of Secchi, P., Vantini, S., Vitelli, V. (2013): " Bagging Voronoi classifiers for clustering spatial 

functional data", International Journal of Applied Earth Observation and Geoinformation, Vol. 22, pp. 53-64 
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Choice of the Metric 5 

• From an L2 perspective the two datasets shows the same 

variability across curves. 

• From an H1 perspective the two datasets shows a different  

variability across curves (lower the former, larger the latter). 

•                  : 1D i.i.d. random variable 
 

•           : Fourier basis 

Figures are courtesy of A. Menafoglio; P. Secchi; M. Dalla Rosa (2013), “A Universal Kriging predictor for spatially 

dependent functional data of a Hilbert Space”. Electronic Journal of Statistics 7, 2209–2240 
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6 A Snapshot at Functional Data Registration/Alignment 

 

Registration of a set of functions 

Find suitable warping functions h1,…, hn such that c1◦h1,…, cn◦hn are the most similar. 

 Landmark Approach (similar means that functions are warped along the 

 x-axis such that each (known) landmark occurs at the same point along 

 the x-axis) 

 Continuous Approach (similar means that functions are warped along 

 the x-axis such that for each point along the x-axis functions present 

 close values along the y-axis) 
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Choice of the Group of Warping Functions 7 
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Not Aligned Curves 

 

Four Clusters 

Aligned Curves 

 

Two Clusters 

200 periodic curves (spike-trains of neuronal activity) 

Figures are courtesy of Patriarca, M., Sangalli, L.M., Secchi, P., Vantini, S.: "Analysis of Spike Train Data: an Application of K-mean 

Alignment“, Electronic Journal of Statistics, 8, 1769-177, Special Section on Statistics of Time Warpings and Phase Variations 
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The Algorithm 

 

 

A Toy Example 

 

 

The Theory 

 

 

The Case Study 
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Clustering of Misaligned 

Functional Data 

Outline 
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9 

The Algorithm 
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Framework 10 

K-mean 

Clustering 

K-mean 

Alignment 

Continuous 

Alignment 

Functional Clustering Alignment / Registration 
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11 Goals 

 

Goal of Continuous Alignment: 

Decoupling Phase and Amplitude Variability 

Goal of K-mean Clustering: 

Decoupling Within and Between-cluster (Amplitude) Variability 

Goal of K-mean Alignment: 

Decoupling Phase Variability, Within-cluster Amplitude Variability, 

and Between-cluster Amplitude Variability 
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12 Continuous Alignment  

(e.g. Sangalli, Secchi, Vantini, Veneziani 2009) 

Estimate the template  

curve c0 

For each curve,  

find hi that maximizes similarity  

between template curve c0  

and patient warped curve ci ◦ hi 

 n unregistered curves 

n registered curves 

and n warping functions 

Maximization 

Estimation 

Continuous  

Alignment 
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13 K-mean Clustering  

(e.g. Tarpey and Kinateder 2003) 

Estimate the K centroids  

curves {c0
k}k=1,2,..,K 

Assign ci to the k-th cluster  

if the similarity  

between c0
k and ci

 

is maximal over k = 1, 2, …, K 

 n unregistered curves 

K clusters 

Assignment 

Estimation 

K-mean 

Clustering 
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14 K-mean Clustering vs Continuous Alignment 

Estimate the K centroids  

curves {c0
k}k=1,2,..,K 

Assign ci to the k-th cluster  

if the similarity  

between c0
k and ci

 

is maximal over k = 1, 2, …, K 

 n unregistered curves 

K clusters 

Assignment 

Estimation 

Estimate the template  

curve c0 

For each curve,  

find hi that maximizes similarity  

between template curve c0  

and patient warped curve ci ◦ hi 

 n unregistered curves 

n registered curves 

and n warping functions 

Maximization 

Estimation 

K-mean 

Clustering 

Continuous  

Alignment 
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15 K-mean Alignment 

 

Estimate the K template/centroid curves {c0
k}k=1,2,..,K 

For each curve, find hi
k that maximizes similarity between  

each template curve c0
k and the candidate warped curve ci ◦ hi 

k 

 n unregistered curves 

n registered curves, n warping functions and K clusters 

Maximization 

Estimation 

Assign ci to the k-th cluster if the similarity between c0
k and ci ◦ hi 

k 

is maximal over k = 1, 2, …, K and then warp ci  along hi  = hi 
k 

Assignment 

K = 1  Continuous Registration Algorithm (e.g. Sangalli et al. 2009) 

W = {1}  Functional K-mean Clustering (e.g. Tarpey and Kinateder 2003) 



simone.vantini@polimi.it 

Functional Clustering 

K-mean Alignment: 

A Double-Facet Method 

16 

Alignment / Registration 

K-mean 

Clustering 

K-mean 

Alignment 

Continuous 

Alignment 

It is a K-mean Clustering 

Algorithm  

where warping is allowed 

It is an Alignment Algorithm  

with K templates 
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17 

A Toy Example 
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18 A Simulated Toy Example: 

Simulation Details 

2 Amplitude Clusters (2 template curves) 

with further clustering in the phase 

Variability in both 

Amplitude and Phase 
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19 

Aligned and clustered curves Warping functions 

K = 2 

K = 1 

K = 3 

   

   

   

A Simulated Toy Example: 

Algorithm Results 

X 

V 

V 
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20 A Simulated Toy Example: 

Algorithm Results 

Boxplots of the similarity indices 

between curves and templates 

Means of the similarity indices  

between curves and templates 
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21 

The Theory 
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Abstract Visualization of Alignment 22 

Original 

Functions 

Aligned 

Functions 

Equivalence 

Classes 

generated by 

the Action of the 

Group of 

Warping 

Functions 
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Meta-Equivalence Result 23 

Analysis of a  

registered functional data set 

with respect to the metric d 

Analysis of a  

set of equivalence classes  

(induced by the application of W 

to the original functions)  

with respect to a new metric dF 

(jointly defined by d and W).  = 

Practice Theory 

(e.g., K-mean Alignment 

in the Functional Space) 

(e.g., K-mean Clustering  

in the Quotient Space) 
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Meta-Equivalence Theorem 24 
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A Topological Characterization of Phase and 

Amplitude Variability 
25 

The introduction of  

a metric/semi-metric d and of a group W of warping functions,  

with respect to which the metric/semi-metric is invariant,  

enables a not ambiguous definition of phase and amplitude variability.  

Total Variability 
(variability between elements of  F) 

 

Amplitude Variability 
(variability between equivalence classes) 

 

Phase Variability 
(variability within equivalence classes) 
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Ancillary variability 

 
26 

Hierarchy of Quotient Spaces 

 

Functions belonging to  

are grouped in  

equivalence classes belonging to  

that are grouped in  

equivalence classes belonging to 
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Some examples of W-invariant semi-metrics  

 
27 

H-translations Ø 

H-translations V-translations 

H-translations V-translations 

H-translations 
V-translations 

V-linear trends 

H-translations  

H-dilations 
V-dilations 

H-translations  

H-dilations 

V-translations 

V-dilations 

… … … 

H-diffeomorphisms V-translations 

Metric / Semi-metric 

Maximal W 

(Phase Variability) Ancillary Variability 
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28 

The Case Study 
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29 Cerebral Aneurysms 

Cerebral aneurysms: malformations of cerebral arteries, in 

particular of arteries belonging to or connected to the  

Circle of Willis. 

EPIDEMIOLOGICAL STATISTICS  
• Incidence rate of cerebral aneurysms: 

 1/20 people 

•  Incidence rate of ruptured cerebral aneurysms per year: 

 1/10000 people per year 

•  Mortality due to a ruptured aneurysm: 

 > 50%: Out of 9 patients with a ruptured aneurysm:  

 3 are expected to die before arriving at the hospital 

 2 to die after having arrived at the hospital 

 2 to survive with permanent cerebral damages 

 2 to survive without permanent cerebral damages 

provaSecchi3_new.mpg
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30 Pathological Classification 

Upper 
High Aneurysm 

Lower 
Low Aneurysm 

Healthy 
No Aneurysm 

33 

25 

7 
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31 From X-rays to Centerlines 

Surface Points Voronoi Diagram Eikoinal Equation Centerline 

3d-array 

(one slice) 
Gradient 3d-array 

(one slice) 

X-rays 

(one direction) 
Contrast Fluid 

Injections 

1 2 3 4 

5 6 7 4 
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32 Discrete Data 

xij Left-Right 

yij Top-Down 

zij Front-Back 

Rij MISR 

sij Abscissa 

Observational Study conducted at Ospedale Ca’ Granda Niguarda – Milano  

relative to 65 patients hospitalized from September 2002 to October 2005. 
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33 Functional Data 

The sample of  65 ICA: each patient is represented 

by the centerline of their ICA  
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34 ICA centerline First Derivatives 
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35 K-mean Alignment: 

Theoretical Choices 

 
 Similarity Index between Curves  Group of Warping Functions 

Properties 
Minimal 

Joint  

Properties 
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36 K-mean Alignment Performances 
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37 One-mean Alignment 
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38 One-mean Alignment: aneurysm location  

on registered ICA radius and curvature profiles  

Unregistered Radius and Curvature Profiles Registered Radius and Curvature Profiles 
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39 One-mean Alignment 
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40 Two-mean Alignment 
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41 Two-mean Alignment vs Two-mean Clustering  
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42 Clustering 

Two-mean Alignment Clusters that are 

morphologically different  

 

30 S-shaped ICAs  

vs 

35 Ω-shaped ICAs 

 

Krayenbuehl et al. (1982) 

No  

Aneurysm 

Aneurysm  

along ICA 

Aneurysm 

downstream ICA 

S-shaped ICAs 100% 52% 30% 

Ω-shaped ICAs 0% 48% 70% 

P-value of Pearson’s Chi-squared test for independence equal to 0.0013 

Fluid-dynamical interpretation of the onset of cerebral aneurysms 
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