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Introduction
3 In model-based clustering each component of a finite mixture model

is associated to a group or cluster.

3 Let x1,x2, . . . ,xn be a sample of n iid observations, whose
distribution can be specified by a pdf/pmf of the following form

f(x;Ψ) =

G∑
k=1

πkfk(x;θk),

with parametersΨ = {(πk,θk), k = 1, . . . , G} (πk > 0,
∑
πk = 1),

andG is the number of mixture components.

3 Implicit assumption: a mixture component Ö a cluster
3 Often, finite mixture of Gaussian densities are used for continuous

data. However, a non-Gaussian cluster may require more than a

single mixture Gaussian component.

“it can be misleading to identify the number of Gaussian
components with the number of clusters” (Hennig, 2010, p. 5).
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Motivating example: Old Faithful data

Motivating example: Old Faithful data
Old Faithful is a geyser located in Yellowstone National Park, Wyoming, US.

http://en.wikipedia.org/wiki/Old_Faithful
http://www.nps.gov/features/yell/webcam/oldFaithfulStreaming.html
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Motivating example: Old Faithful data

There is a direct relationship between the duration of Old Faithful’s eruption

(eruptions, time in mins) and the waiting time before it erupts again (waiting,
time in mins).
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Motivating example: Old Faithful data

Best GMM according to BIC is (EEE,3)
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Motivating example: Old Faithful data

However, the bivariate density estimate clearly indicates the presence of two

separate regions of high density:

eruptions

w
aiting

D
ensity
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Cluster definition

Cluster definition
Working definition of clusters

Clusters may be thought of as regions of high density separated from other
such regions by regions of low density. (Hartigan, 1975, p. 205)

3 Fukunaga & Hostetler (1975) proposed the mean shift algorithm for

detecting the modes of a nonparametric density estimate;

3 Stuetzle (2003) presented a method which exploits the connection between

the minimum spanning tree and the nearest neighbour density estimatie;

3 Stuetzle & Nugent (2010) introduced level set clustering to find the

hierarchical structure of connected components of a density level set;

3 Azzalini & Torelli (2007) proposed a method based on nonparametric density

estimation to find regions of high density. This has been extended to higher

dimensionality by Menardi & Azzalini (2014).

Here I present a proposal which, using the working definition of clusters

given by Hartigan, adapts the methodology of Azzalini & Torelli (2007) to

model-based clustering.
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Methodology
Level set

3 For any threshold c > 0, the upper level set is defined as
L(c) = {x : x ∈ Rp, f(x) > c},

i.e. the subset of Rp
whose density is greater than c, with associated

probability pc =
∫
L(c)

f(x)dx.

3 A level set L(c)may be connected or not. In the latter case two or
more regions of high density are detected.

3 Hartigan (1975) defined the high density clusters at level c as the
connected components of L(c).
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Mode function
3 A step functionm(p) which gives the number of connected
components of L(c) as p varies in (0, 1).

3 Some properties:

• m(p) ≥ 1 for p ∈ (0, 1);

• by definition,m(p) = 0 for p = 0 and p = 1;

• the number of modesM is given by the total number of

increments ofm(p), counted with their multiplicity;

• if the density f is unimodal,M = 1, thenm(p) = 1 for
p ∈ (0, 1);

• as c varies the connected components of L(c) generate a
hierarchical structure (i.e. a tree).
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Sample data and density estimation via mixture modelling

Sample data and density estimation via mixture modelling
3 Given a iid sample X = {x1,x2, . . . ,xn;x ∈ Rp} drawn from a
distribution with density f(x), we may approximate this density
using a GMM withG components of the form

f(x) ≈
G∑

k=1

πkφk(x|µk,Σk)

where πk = mixing probabilities (πk > 0,
∑G

k=1 πk = 1)
φk(·) = multivariate Gaussian density of the k-th com-

ponent with parameters (µk,Σk).

3 Parsimonious parametrisation of the component-covariance matrix

is obtained using the eigen-decompositionΣk = λkDkAkD
>
k

(Banfield & Raftery, 1993; Celeux & Govaert, 1995).

3 MLEs are usually computed via the EM algorithm (McLachlan & Peel,

2000; Fraley & Raftery, 2002), while a standard model selection

procedure (wrt number of mixture components and covariance

matrix parametrisation) may be based on BIC (Schwartz, 1978).
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Sample data and density estimation via mixture modelling

Sample level set
3 Consider the level set for the observed sample data:

S(c) = {xi : xi ∈ X , f̂(xi) > c}, 0 < c ≤ max f̂

with associated relative frequency p̂c =
|S(c)|
n

.

Connected sets
Connected sets are the connected components of S(c) as c varies:

3 Consider the Delaunay triangulation of sample points xi obtained

from Voronoi tesselation (see graphs).
3 After removing the sample points xi /∈ S(c) and all the edges with at
least one vertex among these points, a set of points is obtained

which can form one or more connected components.

3 Each connected component is a mode at density level c.

3 Note that Delaunay triangulation can be obtained directly (and

efficiently) without building the Voronoi diagram.

Identifying connected components in Gaussian finite mixture models for clustering Luca Scrucca



Introduction Methodology High dimensional case Examples Conclusion References

Sample data and density estimation via mixture modelling
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Example: Old Faithful data (continued)

Example: Old Faithful data (continued)
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Estimated density with a cutting

plane at density level c.
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Voronoi diagrams for all the points,

and Delaunay triangulation for

xi ∈ S(c) with p̂c = 0.26.

Two connected components are clearly identified corresponding to local modes

of the estimated density.
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Identifying cluster cores

Identifying cluster cores
3 For each p on an equally spaced grid in the range (0, 1), the sample
level set S(cp) is obtained.

3 The empirical mode function m̂(p) is obtained by counting the
corresponding number of connected components.

3 The total number of increments of m̂(p), counted with their
multiplicity, is equal to the number of modesM .

3 Cluster cores are formed by the data lying in the regions around the

detected modes.

3 The number of clusters is estimated by identifying the connected

components corresponding to the largest empirical mode m̂(p),
counted with their multiplicity.
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Example: Old Faithful data (continued)

Example: Old Faithful data (continued)
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the number of modes found as a

function of the proportion of data

points above a given density level.
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and remaining unlabelled data (�).
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Classification of unallocated points

Classification of unallocated points
3 Once cluster cores have been identified, some observations usually

remain unlabelled and need to be classified.

3 Semi-supervised learning is a class of techniques that make use of

both unlabelled and labelled data for building a classifier (Zhu &

Goldberg, 2009, Ch. 3; McLachlan & Peel, 2000, Sec. 2.19, named as

“partial classification”).

3 However, unallocated points are not positioned randomly in the feature
space, but are placed on the outskirts of cluster cores.

3 Several algorithms could be adopted for this particular

semi-supervised classification task. Here, we propose to fit a

Gaussian mixture model (GMM) on the cluster cores and assign the

unlabelled points to the cluster with the highest posterior probability

in a block assignment procedure.
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Classification of unallocated points

Algorithm for the assignment of unallocated points

1 Fit a supervised GMM using observations from the cluster cores and
their labels.

2 From the GMM estimated on the ninc allocated points, calculate the
conditional probability ẑik = Pr(xi /∈ Ck|Xinc ⊂ X );

3 compute the log-ratios rik = log(ẑik/(1− ẑik)) for all the
unallocated observations;

4 update the classification by assigning those observations whose
rik ≥ qk to cluster core Ck for which ẑik is the maximum, where qk
is the

√
ninc/n quantile of the empirical distribution of log-ratios rik

within group k;

5 if ninc < n repeat steps 2–4, where ninc is the updated number of
allocated points.
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Example: Old Faithful data (continued)

Example: Old Faithful data (continued)
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Plot of final clustering for the Old Faithful data obtained after unlabelled data

have been assigned to one of the cluster cores.
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Example: synthetic data with overlapping components

Example: synthetic data with overlapping components
Consider a simulated sample of 600 observations generated from a

bivariate mixture of six Gaussian components (Baudry et al., 2010):
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Example: synthetic data with overlapping components
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Example: two bivariate elongated clusters

Example: two bivariate elongated clusters
Wong & Lane (1983) discussed a data example where the groups are not

linearly separable:
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Example: two bivariate elongated clusters
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High dimensional case
3 The computational complexity of Delaunay triangulation grows

exponentially with the dimensionality of data (unfeasible for p > 5).

3 The basic idea is to project the data on to a suitable subspace of

reduced dimensionality, where connected components can be easily

found.

3 GMMDR (Gaussian Mixture Modelling on a Dimension Reduced

subspace) is a dimension reduction method which aims at finding

the smallest subspace which captures the clustering information
contained in the data (Scrucca, 2010).

3 The core of the method is to identify those directions where the

cluster means µg , and the cluster covariancesΣg , vary as much as

possible, provided that each direction isΣ-orthogonal to the others.

3 However, here we are more interested in finding those directions

which show the maximal separation among clusters (Scrucca, 2014).
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Directions estimation

Directions estimation
3 To recover the directions with the largest separation among clusters,

consider the following kernel matrix

M =

G∑
k=1

πk(µk − µ)(µk − µ)>

3 The basis β ∈ Rp×r
of the projection subspace S(β) is obtained by

solving

argmax
β

β>Mβ β>Σβ = Ir (1)

3 The solution is computed via the generalised eigen-decomposition

ofM wrtΣ.

3 dim(S(β)) = r ≤ min(G− 1, p), and directions are ordered
according to the corresponding eigenvalues.

3 Using M̂ computed from the estimates obtained fitting a GMM, and

the sample covariance Σ̂, the solution of (1) gives β̂.

3 The data are then projected as Z =Xβ̂.
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Pruning directions

Pruning directions
3 Because some directions are associated with small eigenvalues, we

would like to discard them because they provide little or no

clustering information.

3 A subset selection procedure discussed in Scrucca (2010), and based

on the proposal of Raftery & Dean (2006), is adopted.

3 The basic idea is to use BIC to evaluate the inclusion/exclusion of a

feature from the set of active features in a stepwise greedy search

algorithm.

3 Once the relevant GMMDR directions have been obtained, the

GMMHD algorithm can be applied on the selected features.
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Flea beetles data

Flea beetles data
3 Data on 6 physical measurements on three species of flea beetles

(Ch. concinna, Ch. heptapotamica, and Ch. heikertingeri) are

measured on 74 observations.

Mclust EEE model with 5 components:

log.likelihood n df BIC ICL
-1292.308 74 55 -2821.339 -2825.769

cluster
group 1 2 3 4 5

Concinna 21 0 0 0 0
Heikert. 0 0 0 20 11
Heptapot. 0 2 20 0 0

AdjRandIndex = 0.7676
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Flea beetles data

Estimated basis vectors:
Dir1 Dir2

tars1 -0.229559 -0.019778
tars2 0.142747 -0.082415
head 0.422500 0.452652
aede1 0.010746 -0.361974
aede2 -0.861267 -0.809869
aede3 0.080766 -0.031781

Dir1 Dir2
Eigenvalues 1.8604 1.346
Cum. % 58.0226 100.000

Mclust solution projected along

the first two GMMDR directions

GMMDR dir1
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Flea beetles data

GMMHD

Initial cluster cores:
1 2 3 <NA>
17 19 24 14

Final clustering:
1 2 3

21 22 31

cluster
group 1 2 3

Concinna 21 0 0
Heikert. 0 0 31
Heptapot. 0 22 0

AdjRandIndex = 1.00
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Flea beetles data

GMMHD: cluster cores
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Flea beetles data

GMMHD: final clustering
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Yeast data

Yeast data
3 Franczak et al. (2013) analysed a dataset with 1,484 proteins in two

cellular localisation sites (CYT = cytosolic or cytoskeletal, ME3 =
membrane protein, no N-terminal signal) and three variables for

clustering: McGeoch’s method for signal sequence recognition (mcg),
the score of the ALOM membrane spanning region prediction

program (alm), and the score for the discriminant analysis of the
amino acid content of vacuolar and extracellular proteins (vac).

3 They fitted a mixture of shifted asymmetric Laplace (SAL)

distributions for clustering purposes, which gave favourable results

(ARI= 0.8134).

3 The GMM with the largest BIC is model EEI with 8 components (ARI

= 0.4972), where a large number of components is required to
account for the asymmetry in the data.
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Yeast data

GMMDR GMMHD

Estimated basis vectors: Initial cluster cores:
Dir1 Dir2 1 2 <NA>

mcg -0.089080 0.066101 311 76 239
alm -0.993285 0.112436
vac -0.073824 0.991458 Final clustering:

1 2
Dir1 Dir2 475 151

Eigenvalues 0.5737 0.0283
Cum. % 95.2976 100.0000

cluster
group 1 2

CYT 457 6
ME3 18 145

AdjRandIndex = 0.8427
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Yeast data

GMMHD: cluster cores
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Yeast data

GMMHD: final clustering
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Italian wines data

Italian wines data
3 Data on 13 chemical and physical properties of three types of wine

(Barolo, Grignolino, and Barbera) measured on 178 observations.

3 We perform the analysis on standardized scale.

Mclust VEI (diagonal, equal shape) model with 8 components:

log.likelihood n df BIC ICL
-2392.975 178 131 -5464.765 -5478.056

Clustering table:
1 2 3 4 5 6 7 8
40 18 22 22 4 27 18 27

cluster
group 1 2 3 4 5 6 7 8
Barbera 0 0 0 0 4 0 17 27
Barolo 40 18 1 0 0 0 0 0
Grignolino 0 0 21 22 0 27 1 0

AdjRandIndex = 0.4808
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Italian wines data

GMMDR GMMHD

Estimated basis vectors: Initial cluster cores:
Dir1 Dir2 1 2 3 <NA>

Alcohol 0.15030 -0.34141 51 57 42 28
Malic -0.01957 -0.15750
Ash 0.03459 -0.26951 Final clustering:
Alcalinity -0.20998 0.26606 1 2 3
Magnesium 0.00034 0.08521 60 71 47
Phenols -0.04041 0.13265
Flavanoids 0.67830 0.09616
Nonflavanoid 0.01072 -0.00663 cluster
Proanthocyanins -0.02429 0.11065 group 1 2 3
Intensity -0.46219 -0.44011 Barbera 0 1 47
Hue 0.05599 0.09705 Barolo 59 0 0
OD280 0.23485 0.13693 Grignolino 1 70 0
Proline 0.44429 -0.66855

AdjRandIndex = 0.9651
Dir1 Dir2

Eigenvalues 1.598 1.1764
Cum. % 57.598 100.0000
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Italian wines data

GMMHD: cluster cores
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Italian wines data

GMMHD: final clustering
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Unimodal skewed data

Unimodal skewed data
3 Reasonable clustering methods should not only be able to recognise

the presence of homogeneous groups in the data, but also to detect

situations where there is no evidence of clusters.

3 Number of clusters selected in 100 samples of size n = 200 from
p-dimensional independent χ2(10) distributions

p = 2 p = 5 p = 10

Number of clusters 1 2 3 4+ 1 2 3 4+ 1 2 3 4+

GMM 5 65 30 0 22 76 1 1 68 31 1 0

GMMHD 97 3 0 0 99 1 0 0 96 4 0 0

3 Number of clusters selected in 100 samples of size n = 200 from
p-dimensional skew-t unimodal distributions

p = 2 p = 5 p = 10

Number of clusters 1 2 3 4+ 1 2 3 4+ 1 2 3 4+

GMM 0 50 47 3 0 23 72 5 0 5 83 12

GMMHD 98 2 0 0 97 3 0 0 99 1 0 0
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Some conclusions
The proposed approach appears to:

1 improve the identification of non-Gaussian clusters;
2 be able to identify clusters which cannot be obtained by combining
mixture components (Baudry et al., 2010; Hennig, 2010);

3 improve over the approach based on nonparametric density
estimation as the dimensionality increases.

Future works
3 improve the computational requirements, in particular when n
and/or p are large;

3 investigate the case n� p;

3 extend the approach to non-Gaussian model-based clustering (i.e.

mixture of skew-normal, mixture of skew-t, ...);

3 investigate how to deal with missing values.

The GMMHDmethodology will soon be available in the R package MCLUST.
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